热门话题
#
Bonk 生态迷因币展现强韧势头
#
有消息称 Pump.fun 计划 40 亿估值发币,引发市场猜测
#
Solana 新代币发射平台 Boop.Fun 风头正劲
LLM 出来之后,在应用层的折腾从未停歇。从 Prompt 调优到 Workflow 配置,再到 Agent 构建,最终目的都是一样的:让 LLM 更好地为人类干活,把机器的性能压榨到极致。
对 LLM 的压榨,可以分为两个维度。一是帮助它找到最优算法,让推理少走弯路。
为此我们几乎把能想到的路子都走了一遍,让 LLM 学会反思(reflection、self-consistency、self-critics),学会推理和规划(reasoning、planning、chain-of-thought、tree-of-thought);学会记忆(short-term memory、long-term memory),不至于对话一长就失忆;学会找知识(RAG、knowledge graph),在外部世界里补充事实;学会构建上下文(context building),在有限 token 里塞下更多有效信息;学会用工具(tool-use,function calling,MCP),把事情交给外部程序去跑,而不是光靠自己生成;等等。
这些东西,说到底都是技巧和机制,本质目的是让 LLM 更快理解人类要干啥,围绕目标(goal-oriented)尽可能找到一条代价最小的路,跑到最优解上去。
第二个维度,是对时间的压榨,让 LLM 可以做到 7×24 小时不停歇。当我们对 LLM 有了更深入的理解之后,很容易想到把它打造成属于自己或组织的“数字员工”,它不知疲惫、不会抱怨,可以持续运转、不断学习。
大部分人今天用 AI 的方式,还停留在查资料、总结内容、写周报月报这些单点场景上,如果要真正构建一名“不停歇的 AI 数字员工”,光靠这些还不够。我们需要先规划出属于自己的 AI 数字工厂 ——想清楚要造出来的“产品”是什么,是沉淀知识的系统,是自动化的业务流程,还是一个可以长期迭代的服务。
在这座工厂里,AI 是生产线上的执行者,它负责具体的加工与产出;而人类的角色发生了转变,从“亲自干活的工人”变成“监工与管理者”。 人类不再亲手完成每一步,而是要设计流水线,设定规则,制定指标,监控质量,并在需要时调度资源。换句话说,AI 的价值不在于替我们“干一点活”,而在于帮把整条流水线跑起来,而人类更像是“数字工厂的管理者”。
当这两个维度结合起来时,真正的拐点就出现了。LLM 不再只是一个冷冰冰的工具,而是逐渐变成了可以长期协作的伙伴。它既能承担重复性劳动,也能在复杂问题上提供洞见。它不仅仅是“帮你做事”,更是“和你一起做事”。
未来的差距,不在于谁能写出更漂亮的 Prompt,而在于谁能把 LLM 真正融入到自己的时间和组织里,形成稳定的生产方式。
因此,会不会用、用到什么深度、能否持续优化,这些才是长期的竞争力来源。谁能把 AI 运行成“工厂”,让自己从执行者转为监工和管理者,谁就能在未来的日常工作和业务中,获得真正可复用、可累积的优势。
热门
排行
收藏